Paper
15 June 2006 High-speed highly-flexible reconfigurable data acquisition system for astronomy
Bruce E. Pirger, Justin Schoenwald, Terry L. Herter, George E. Gull, Joseph D. Adams, Luke D. Keller, Marc Berthoud, Charles Henderson, Gordon J. Stacy, Thomas Nikola
Author Affiliations +
Abstract
We have developed a high speed, flexible, data acquisition system and targeted it to astronomical imaging. The system is based on Field Programmable Gate Arrays (FPGAs) and provides a gigabit/sec fiber optic link between the electronics located on the instrument and the host computer. The FPGAs are reconfigurable over the fiber optic link for maximum flexibility. The system has initially been targeted at DRS Technologies' 256x256 Si:As and Si:Sb detectors used in FORCAST1, a mid-IR camera/spectrograph built by Cornell University for SOFIA. The initial configuration provides sixteen parallel channels of six Msamples/second 14-bit analog to digital converters. The system can coadd 256x256 images at over 1000 frames per second in up to 64 different memory positions. Array clocking and sampling is generated from uploaded clocking patterns in two independent memories. This configuration allows the user to quickly create, on the fly, any form of array clocking and sampling (destructive, non-destructive, sample up the ramp, additional reset frames, Fowler, single frames, co-added frames, multi-position chop, throw away frames, etc.) The electronics were designed in a modular fashion so that any number of analog channels from arrays or mosaics of arrays can be accommodated by using the appropriate number of FPGA boards and preamps. The preamp/analog to digital converter boards can be replaced as needed to operate any focal plane array or other sensor. The system also provides analog drive capability for controlling an X-Y chopping secondary mirror, nominal two position chopping, and can also synchronize to an externally driven chop source. Multiple array controllers can be synchronized together, allowing multi-channel systems to share a single chopping secondary, yet clock the focal planes differently from each other. Due to the flexibility of the FPGAs, it is possible to develop highly customized operating modes to maximize system performance or to enable novel observations and applications.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Bruce E. Pirger, Justin Schoenwald, Terry L. Herter, George E. Gull, Joseph D. Adams, Luke D. Keller, Marc Berthoud, Charles Henderson, Gordon J. Stacy, and Thomas Nikola "High-speed highly-flexible reconfigurable data acquisition system for astronomy", Proc. SPIE 6276, High Energy, Optical, and Infrared Detectors for Astronomy II, 62760X (15 June 2006); https://doi.org/10.1117/12.672249
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Field programmable gate arrays

Sensors

Analog electronics

Data acquisition

Electronics

Clocks

Digital signal processing

Back to Top