You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 August 2006Temperature-dependent fiber optic hydrogen gas sensor response characteristics
Dynamic response characteristics of silica fiber long-period grating with a modified cladding, composed of
∼10-100 nm nanoparticle palladium oxides thin film material prepared by a magnetron sputtering
technique, have been investigated at several elevated temperatures with a 2%H2/98%N2 mixing gas
concentration. The fiber cladding modified grating, without cladding chemical etching process,
demonstrates 540 pm per 1% H2 sensitivity, a better than 1sec response times at 160oC, respectively. The
thermal responses of the prototype have demonstrated increased dynamic wavelength shift while reducing
response time simultaneously. The observed thermal dependence of the prototype could be attributed to a
combined effect of thermal dependent hydrogen atoms diffusion rate and hydrogen atoms solubility.