You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 September 2006Optical design for generating Bessel beams for micromanipulation
The central maximum of a Bessel beam offers a "non-diffracting" focal line of light that is useful in the fields of optical trapping and micromanipulation. This paper discusses the design and performance of diffractive optics for converting a Gaussian beam into a Bessel beam. The theoretical foundation of Bessel beams will be reviewed along with their optical properties. Bessel beams provide several unique characteristics such as a large depth of field and self-reconstruction. It is well known that the depth of field of a Bessel beam is larger than that of a Gaussian beam of equivalent size. However, this comes at the expense of very little power contained within the central maximum of the Bessel beam. Optical modeling and beam propagation methods are used to analyze what effect the number of rings has on the depth of field. This is an important consideration if Bessel beams are ever to be used in the fields of optical interconnects and imaging or in the area of laser processing. Where appropriate, comparisons are made between Bessel and Gaussian beams.
The alert did not successfully save. Please try again later.
Andrew Stockham, John G. Smith, "Optical design for generating Bessel beams for micromanipulation," Proc. SPIE 6326, Optical Trapping and Optical Micromanipulation III, 63261D (11 September 2006); https://doi.org/10.1117/12.681098