You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 September 2006Determination of living cell characteristics and behavior using biophotonic methods
This paper describes the development of methods for the determination of the characteristics and the behavior of living
neural cells. A technology which is used is the deep ultraviolet (DUV) modification of methylmethacrylate polymers
which leads to a new surface chemistry affecting the selective absorption of proteins and the adhesion of living cells in
vitro. The bi-functionality of the modified polymer chips supporting waveguides and cell anchorage capabilities at the
same time provides the opportunity to monitor protein adsorption, cell attachment and spreading processes by
evanescent-field techniques. This allows the defined spatial control of a cell/surface interaction and leads to a
combination of desired biological and optical properties of the polymer. Among them are the high sensitivity of cultured
mammalian cells to, for example, environmental changes and special features of integrated optical waveguides like their
online compatibility, minuteness and robustness. The scientific fields, biology and optics, meet at the polymer surface
becoming a cell culture substrate together with an optical waveguide by the application of special patterning and
fabrication technologies. In addition to the already mentioned fabrication and immobilization technology, the technique
proposed also offers the possibility of being able to couple to microstamping processes and to also incorporate electrical
measurements on individual cells. Thus, by extending this method and coupling it to the DUV technique described above
the possibility is given of being able to simultaneously optically and electrically interrogate individual cellular processes
with spatial resolution.
The alert did not successfully save. Please try again later.
Dominik G. Rabus, Alexander Welle, R. Adam Seger, Yasuhisa Ichihashi, Mathias Bruendel, Jeremy Hieb, Michael Isaacson, "Determination of living cell characteristics and behavior using biophotonic methods," Proc. SPIE 6329, Optofluidics, 63290H (13 September 2006); https://doi.org/10.1117/12.681015