You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 December 2006Using N-type organic material with photoconductivity for low-reflectance OLEDs
In this paper, we have demonstrated a low-reflectance organic light-emitting device (OLED) by inserting a perylene
diimide derivative between the emitting layer (EML) and the cathode. Such a material exhibits a good electron transport
capability and good photoconductivity which absorbs light. A semi-transparent layer composed of thin aluminum (Al)
and silver (Ag) was used between the EML and the n-type organic material, a perylene diimide derivative, for better
electron injection and efficient destructive interference. The J-V characteristics of our low reflection and the control one
are nearly identical which shows the superior conductivity of this material. In addition, the absorption peak of this ntype
organic material is near 550 nm which can eliminate most of the ambient visible light. And the potocurrent is
generated from self-absorption by this material. Thus, this device can also be applied as a photodetector or the
applications of the self-adjustable display under different ambient illumination with suitable driving scheme.