You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 September 2006Er3+-Yb3+ co-doped phosphate glass optical fiber for application at 1.54 microns
We present current work developed at INO on phosphate glass optical fiber for laser and amplifier applications at 1.54
microns. Core and cladding glasses were fabricated by a multi-components melting process which gave an uniform
refractive index core profile. Rod-in-tube method under Argon atmosphere was used to fabricate optical fibers. The
effect of nitrogen atmosphere on hydroxyl groups OH- during glass melting was studied. The absorption coefficient
calculated at 3.42 μm was found to be lower than 0.5 cm-1 which corresponds to less than 70 ppm OH-. Absorption and
emission cross sections were calculated at 1534 nm. Fabrication process allowed us to decrease background losses of
core Er3+ - Yb3+ co-doped fiber between 0.02 and 0.04 dB/cm. Laser power was measured at 1563 nm and a 26% slope
efficiency was achieved with a 22 cm-long single-clad fiber co-doped with 1.1 wt% in Er3+ and 11.1 wt% in Yb3+. For
the same fiber, an internal gain was found to be 20 dB at 1536 nm for a 5-cm-long fiber.
The alert did not successfully save. Please try again later.
Christophe Lafond, Jocelyne Osouf, Pierre Laperle, Jean-Luc Soucy, Cynthia Desrosiers, Steeve Morency, André Croteau, André Parent, "Er3+ -Yb3+ co-doped phosphate glass optical fiber for application at 1.54 microns," Proc. SPIE 6343, Photonics North 2006, 63430M (8 September 2006); https://doi.org/10.1117/12.707667