You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 October 2006PAB and PEB temperature gradient methodology for CAR optimization
Chemically amplified resist (CAR) performance can be greatly influenced by post apply bake (PAB) and post exposure bake (PEB) conditions. The difficulty with optimizing these conditions for photomask process is cost and time. In typical wafer CAR resist development, multiple wafer splits and skews can be rapidly processed with relatively low cost and fast turn around time, whereas in photomask processing each ebeam-written mask with a set of DOE conditions can be expensive and time consuming to produce.
This paper discusses a novel mask design and testing methodology that allow for many combinations of PEB and PAB conditions to be evaluated with one mask. In brief, this methodology employs orthogonal PAB and PEB thermal gradients across a plate. Some thermal profile, darkloss, resist top down critical dimensions (CD), and SEM cross section image results will be shared and discussed.
The alert did not successfully save. Please try again later.
Thuc H. Dam, Andrew Jamieson, Maiying Lu, Ki-Ho Baik, "PAB and PEB temperature gradient methodology for CAR optimization," Proc. SPIE 6349, Photomask Technology 2006, 634906 (20 October 2006); https://doi.org/10.1117/12.692939