You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 October 2006A novel process of etching EUV masks for future generation technology
Studies on pattern transfer of next generation lithographic (EUV) photomask were carried out. Based on current absorber layer material candidates, thermodynamic calculations were performed and plasma etch gas system and composition were investigated. The gas systems have the advantage of all etch products being in volatile condition. This is helpful to keep the etch process and etch chamber clean. For etch CD bias challenge in EUV photomask etch, self-mask concept was investigated, which makes anti-reflective (AR) sub-layer of the absorber layer function as a hard mask for the bulk absorber layer beneath. It significantly reduces etch CD bias and improves pattern transfer fidelity. For common candidates of EUV mask absorber layers such as TaBO/TaBN and TaSiON/TaSi, reactive gas systems were proposed according to thermodynamic calculations with all products volatile. AR sub-layers were etched in one gas composition with volatiles. Once the AR sub-layer is etched through, gas composition was changed so that the bulk absorber sub-layer beneath is etched selectively with volatile products. Excellent results in profiles, CD bias, CD uniformity, and underneath buffer/capping layer impact have been demonstrated.
The alert did not successfully save. Please try again later.
Banqiu Wu, Ajay Kumar, Madhavi Chandrachood, Ibrahim Ibrahim, Amitabh Sabharwal, "A novel process of etching EUV masks for future generation technology," Proc. SPIE 6349, Photomask Technology 2006, 634909 (20 October 2006); https://doi.org/10.1117/12.705403