You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 October 2006Inspectability and printability of lines and spaces halftone masks for the advanced DRAM node
With decreasing pattern sizes the absolute size of acceptable pattern deviations decreases. For mask-makers a
new technology requires a review, which mask design variations print on the wafer under production illumination
conditions and whether these variations can be found reliably (100%) with the current inspection tools. As
defect dispositioning is performed with an AIMS-tool, the critical AIMS values, above which a defect prints
lithographically significant on the wafer, needs to be determined. In this paper we present a detailed sensitivity
analysis for programmed defects on 2 different KLA 5xx tools employing the pixel P90 at various sensitivity
settings in die-to-die transmitted mode. Comparing the inspection results with the wafer prints of the mask
under disar illumination it could be shown that all critical design variations are reliably detected using a state-of-the-art tool setup. Furthermore, AIMS measurements on defects with increasing defect area of various defect
categories were taken under the same illumination conditions as for the wafer prints. The measurements were
evaluated in terms of AIMS intensity variation (AIV). It could be shown that the AIMS results exhibit a linear
behavior if plotted against the square-root area (SRA) of the defects on the mask as obtained from mask SEM
images. A consistent lower AIV value was derived for all defect categories.
The alert did not successfully save. Please try again later.
Arndt C. Dürr, Karsten Gutjahr, Jan Heumann, Martin Stengl, Frank Katzwinkel, Andreas Frangen, Thomas Witte, "Inspectability and printability of lines and spaces halftone masks for the advanced DRAM node," Proc. SPIE 6349, Photomask Technology 2006, 63493O (20 October 2006); https://doi.org/10.1117/12.693061