You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 October 2006Bioaerosols laser-induced fluorescence provides specific robust signatures for standoff detection
One of today's primary security challenges is the emerging biological threat due to the increased accessibility to
biological warfare technology and the limited efficiency of detection against such menace. At the end of the 90s, Defence
R&D Canada developed a standoff bioaerosol sensor, SINBAHD, based on intensified range-gated spectrometric
detection of Laser Induced Fluorescence (LIF) with an excitation at 351 nm. This LIDAR system generates specific
spectrally wide fluorescence signals originating from inelastic interactions with complex molecules forming the building
blocks of most bioaerosols. This LIF signal is spectrally collected by a combination of a dispersive element and a range-gated
ICCD that limits the spectral information within a selected atmospheric cell. The system can detect and classify
bioaerosols in real-time, with the help of a data exploitation process based on a least-square fit of the acquired
fluorescence signal by a linear combination of normalized spectral signatures. The detection and classification processes
are hence directly dependant on the accuracy of these signatures to represent the intrinsic fluorescence of bioaerosols and
their discrepancy. Comparisons of spectral signatures acquired at Suffield in 2001 and at Dugway in 2005 of bioaerosol
simulants, Bacillius subtilis var globiggi (BG) and Erwinia herbicola (EH), having different origin, preparation protocol
and/or dissemination modes, has been made and demonstrates the robustness of the obtained spectral signatures in these
particular cases. Specific spectral signatures and their minimum detectable concentrations for different
simulants/interferents obtained at the Joint Biological Standoff Detection System (JBSDS) increment II field
demonstration trial, Dugway Proving Ground (DPG) in June 2005, are also presented.
The alert did not successfully save. Please try again later.
Sylvie Buteau, Jean-Robert Simard, Bernard Déry, Gilles Roy, Pierre Lahaie, Pierre Mathieu, Jim Ho, John McFee, "Bioaerosols laser-induced fluorescence provides specific robust signatures for standoff detection," Proc. SPIE 6378, Chemical and Biological Sensors for Industrial and Environmental Monitoring II, 637813 (25 October 2006); https://doi.org/10.1117/12.686010