You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 October 2006Combined optimal quantization and lossless coding of digital holograms of three-dimensional objects
Digital holography is an inherently three-dimensional (3D) technique for the capture of real-world objects. Many existing 3D imaging and processing techniques are based on the explicit combination of several 2D perspectives (or light stripes, etc.) through digital image processing. The advantage of recording a hologram is that multiple 2D perspectives can be optically combined in parallel, and in a constant number of steps independent of the hologram size. Although holography and its capabilities have been known for many decades, it is only very recently that digital holography has been practically investigated due to the recent development of megapixel digital sensors with sufficient spatial resolution and dynamic range. The applications of digital holography could include 3D television, virtual reality, and medical imaging. If these applications are realized, compression standards will have to be defined. We outline the techniques that have been proposed to date for the compression of digital hologram data and show that they are comparable to the performance of what in communication theory is known as optimal signal quantization. We adapt the optimal signal quantization technique to complex-valued 2D signals. The technique relies on knowledge of the histograms of real and imaginary values in the digital holograms. Our digital holograms of 3D objects are captured using phase-shift interferometry. We complete the compression procedure by applying lossless techniques to the quantized holographic pixels.
The alert did not successfully save. Please try again later.
Alison E. Shortt, Thomas J. Naughton, Bahram Javidi, "Combined optimal quantization and lossless coding of digital holograms of three-dimensional objects," Proc. SPIE 6392, Three-Dimensional TV, Video, and Display V, 63920A (17 October 2006); https://doi.org/10.1117/12.685536