You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 October 2006A novel image change detection method based on enhanced growing self-organization feature map
Post-classification analysis is an important way for remotely sensed imagery change detection. In this paper, we propose a novel classification way for change detection using multispectral IKONOS imagery. The classification way is called after Enhanced Growing Self-Organization Map (EGSOM). The EGSOM is designed to solve two limitation of traditional Self Organization Feature Map (SOM). One is the training time of SOM is endless, the other is SOM's structure is fixed before train. EGSOM make use of Growing Self Organization Feature Map and the network's weights are initialized after hierachical clustering method. The method can save network-training time and make the network express input data correctly. Using EGSOM, we classify Multispectral IKONOS imagery and analyze the change detection result. The experiment shows the EGSOM can achieve better classification results than max likelihood method.
The alert did not successfully save. Please try again later.
Yan Song, Xiuxiao Yuan, Honggen Xu, Yun Yang, "A novel image change detection method based on enhanced growing self-organization feature map," Proc. SPIE 6419, Geoinformatics 2006: Remotely Sensed Data and Information, 641915 (28 October 2006); https://doi.org/10.1117/12.713024