You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 February 2007Electrical properties of back-gated n-layer graphene films
We present results of room temperature studies of the electrical characteristics of back-gated ultrathin graphite films
prepared by mechanical transfer of thin sections of Highly Oriented Pyrolytic Graphite (HOPG) to a Si/SiO2
substrate. The films studied were quite thin, exhibiting only a few graphene layers (n). Films with thickness in the
range 1 < n < 20 were studied, where n has been deduced by Atomic Force Microscopy (AFM) z-scans. The n value
deduced by AFM z-scan data was correlated with the n value deduced by Raman scattering data. We discuss at some
length, the issue of whether or not Raman scattering can provide a standalone measure of n. Electrical contacts were
made to a few of the low n (n = 1,2,3) graphene films. Most graphene films exhibited a nearly symmetric resistance
(R) anomaly vs. gate voltage (VG) in the range 25 < VG < 110 V; some films exhibited as much as a factor of ~50
decrease in R (relative to the maximum R) with changing VG. An interesting low bias shoulder on the negative side
of the resistance peak anomaly was also observed. The devices were fabricated with a lithography free process.
The alert did not successfully save. Please try again later.
P. Joshi, A. Gupta, P. C. Eklund, S. A. Tadigadapa, "Electrical properties of back-gated n-layer graphene films," Proc. SPIE 6464, MEMS/MOEMS Components and Their Applications IV, 646409 (12 February 2007); https://doi.org/10.1117/12.707654