You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 January 2007High-performance silicon scanning mirror for laser printing
This paper describes the design, fabrication, and characterization of the first MEMS scanning mirror with performance
matching the polygon mirrors currently used for high-speed consumer laser printing. It has reflector dimensions of 8mm
X 0.75mm, and achieves 80o total optical scan angle at an oscillation frequency of 5kHz. This performance enables the
placement of approximately 14,000 individually resolvable dots per line at a rate of 10,000 lines per second, a record-setting
speed and resolution combination for a MEMS scanner. The scanning mirror is formed in a simple
microfabrication process by gold reflector deposition and patterning, and through-wafer deep reactive-ion etching. The
scanner is actuated by off-the-shelf piezo-ceramic stacks mounted to the silicon structure in a steel package. Device
characteristics predicted by a mathematical model are compared to measurements.
The alert did not successfully save. Please try again later.
Wyatt O. Davis, Dean Brown, Mark Helsel, Randy Sprague, Greg Gibson, Arda Yalcinkaya, Hakan Urey, "High-performance silicon scanning mirror for laser printing," Proc. SPIE 6466, MOEMS and Miniaturized Systems VI, 64660D (22 January 2007); https://doi.org/10.1117/12.700849