Translator Disclaimer
Paper
5 March 2007 Free viewpoint image generation using multi-pass dynamic programming
Author Affiliations +
Proceedings Volume 6490, Stereoscopic Displays and Virtual Reality Systems XIV; 64901F (2007) https://doi.org/10.1117/12.706735
Event: Electronic Imaging 2007, 2007, San Jose, CA, United States
Abstract
Ray-Space is categorized by Image-Based Rendering (IBR), thus generated views have photo-realistic quality. While this method has the performance of high quality imaging, this needs a lot of images or cameras. The reason why that is Ray-Space requires various direction's and position's views instead of 3D depth information. In this paper, we reduce that flood of information using view-centered ray interpolation. View-centered interpolation means estimating view dependent depth value (or disparity map) at generating view-point and interpolating that of pixel values using multi-view images and depth information. The combination of depth estimation and interpolation realizes the rendering photo-realistic images effectively. Unfortunately, however, if depth estimation is week or mistake, a lot of artifacts appear in creating images. Thus powerful depth estimation method is required. When we render the free viewpoint images video, we perform the depth estimation at every frame. Thus we want to keep a lid on computing cost. Our depth estimation method is based on dynamic programming (DP). This method optimizes and solves depth images at the weak matching area with high-speed performance. But scan-line noises become appeared because of the limit of DP. So, we perform the DP multi-direction pass and sum-up the result of multi-passed DPs. Our method fulfills the low computation cost and high depth estimation performance.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Norishige Fukushima, Tomohiro Yendo, Toshiaki Fujii, and Masayuki Tanimoto "Free viewpoint image generation using multi-pass dynamic programming", Proc. SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV, 64901F (5 March 2007); https://doi.org/10.1117/12.706735
PROCEEDINGS
11 PAGES


SHARE
Advertisement
Advertisement
Back to Top