You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 March 2007Blood vessel classification into arteries and veins in retinal images
The prevalence of diabetes is expected to increase dramatically in coming years; already today it accounts for
a major proportion of the health care budget in many countries. Diabetic Retinopathy (DR), a micro vascular
complication very often seen in diabetes patients, is the most common cause of visual loss in working age population
of developed countries today. Since the possibility of slowing or even stopping the progress of this disease
depends on the early detection of DR, an automatic analysis of fundus images would be of great help to the
ophthalmologist due to the small size of the symptoms and the large number of patients. An important symptom
for DR are abnormally wide veins leading to an unusually low ratio of the average diameter of arteries to veins
(AVR). There are also other diseases like high blood pressure or diseases of the pancreas with one symptom being
an abnormal AVR value. To determine it, a classification of vessels as arteries or veins is indispensable. As to our
knowledge despite the importance there have only been two approaches to vessel classification yet. Therefore we
propose an improved method. We compare two feature extraction methods and two classification methods based
on support vector machines and neural networks. Given a hand-segmentation of vessels our approach achieves
95.32% correctly classified vessel pixels. This value decreases by 10% on average, if the result of a segmentation
algorithm is used as basis for the classification.
The alert did not successfully save. Please try again later.
Claudia Kondermann, Daniel Kondermann, Michelle Yan, "Blood vessel classification into arteries and veins in retinal images," Proc. SPIE 6512, Medical Imaging 2007: Image Processing, 651247 (2 March 2007); https://doi.org/10.1117/12.708469