You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 April 2007Development of non-topcoat resist polymers for 193-nm immersion lithography
Recently it is known well that blending hydrophobic additives into conventional resist polymer drastically improve its
film surface hydrophobicity. So we thought that this approach was one of candidates and most promising to
achieve a non-topcoat resist process for immersion lithography. And it would be able to maintain original resist
performance because only a small amount of additives were added into conventional resist. Then we have investigated
hydrophobic polymers for use as additives of non-topcoat resists.
We have newly successfully synthesized various new highly fluorinated monomers by our peculiar fluorination
process. We found that some specific methacrylate ,which have perfluorinated cyclic structure, showed excellent
hydrophobicity. The other hydrophobic candidates is our fluoropolymer, FUGU, which had already developed, having
partially fluorinated monocyclic structure. However its hydrophobicity is insufficient due to presence of acidic
hydroxyl group which act as dissolution unit into the developer. To improve the its hydrophobicity, we protected all or a
part of its hydroxyl group. The protected FUGU polymer provide good hydrophobicity whose sliding angle (S.A.) and
receding angle (R.A.) were 7 degree and 90 degree respectively , compared to original polymer, FUGU.
In this paper, we describe a characteristics and evaluation of these our hydrophobic polymers to apply to additives for
non-topcoat resists.
We have optimized these polymers to apply to additive for conventional resist. As a result, various kinds of additives
were obtained. For example, some of them dissolve in developer due to the presence of alkali soluble group in the
polymer, the others are soluble in developer after deprotection reaction by post exposure bake. We call the former one is
'top-coat type', the latter is 'resist type'. Two type additives were investigated to give the hydrophobicity and to depress
the leaching amount to conventional resist.