You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 March 2007Image tone optimization in advanced mask making for DUV lithography
Deep-UV (DUV) lithography has been developed to define minimum feature sizes of sub-100 nm dimensions of devices
semiconductor. In response to this trend, DUV mask technology has been proposed as an effective technique for
considering the reduction of mask making cost, especially, in low volume designs. However, the requirement of tight CD
control of the mask features in advanced devices is resulted in increasing of mask cost. In this research, we discussed
two different typed image tones comparison, positive and negative tone, in DUV lithography. The choice of final mask
tone needs to be selected as function of pattern density and shape. The evaluation items to judge if the mask is good are
the OPC model accuracy, resolution and mask throughput. Both mask process and manufacturing throughput are affected
by image tone type of positive and negative. This paper will show the procedures and results of experiment.
The alert did not successfully save. Please try again later.
Jong-doo Kim, Mun-hoe Do, Seong-ho Jeong, Jea-hee Kim, Keeho Kim, "Image tone optimization in advanced mask making for DUV lithography," Proc. SPIE 6519, Advances in Resist Materials and Processing Technology XXIV, 65193L (21 March 2007); https://doi.org/10.1117/12.712038