You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 March 2007Application of full-chip optical proximity correction for sub-60-nm memory device in polarized illumination
As the design rule shrinks to its natural limit, reduction in lithography process margin and high Critical
Dimension (CD) error gives rise to use of many Resolution Enhancement Techniques (RET). Recently, one the popular
RET method to solve the above problem is polarized illumination. It is used to enhance the reduced lithography process
margin and enhance CD uniformity. Polarization lithography basically uses one sided polarized light source. Therefore
process margin increases for smaller design rule patterns. In this paper, we will present the results for polarized
illumination based Optical proximity Correction (OPC) for sub-60nm memory device. First, models for polarization
based and un-polarization based method will be compared for its model accuracy. Second, the process margin
improvement for polarized and un-polarized illumination will be compared and analyzed for poly layer of sub-60nm
memory device. Finally, method for further enhancing CD error within 5% for polarized OPC model will be discussed.