You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 April 2007Piezoelectric polymers actuators for precise shape control of large
scale space antennas
Extremely large, lightweight, in-space deployable active and passive microwave antennas are demanded by future
space missions. This paper investigates the development of PVDF based piezopolymer actuators for controlling the
surface accuracy of a membrane reflector. Uniaxially stretched PVDF films were poled using an electrodeless
method which yielded high quality poled piezofilms required for this applications. To further improve the
piezoperformance of piezopolymers, several PVDF based copolymers were examined. It was found that one of
them exhibits nearly three times improvement in the in-plane piezoresponse compared with PVDF and P(VDF-TrFE)
piezopolymers. Preliminary experimental results indicate that these flexible actuators are very promising in
controlling precisely the shape of the space reflectors. To evaluate quantitatively the effectiveness of these PVDF
based piezopolymer actuators for space reflector applications, an analytical approach has been established to study
the performance of the coupled actuator-reflector-control system. This approach includes the integration of a
membrane reflector model, PVDF piezopolymer actuator model, solution method, and shape control law. The reflective Newton method was employed to determine the optimal electric field for a given actuator configuration and loading/shape error.
The alert did not successfully save. Please try again later.
Qin Chen, Don Natale, Bret Neese, Kailiang Ren, Minren Lin, Q. M. Zhang, Matthew Pattom, K. W. Wang, Houfei Fang, Eastwood Im, "Piezoelectric polymers actuators for precise shape control of large scale space antennas," Proc. SPIE 6524, Electroactive Polymer Actuators and Devices (EAPAD) 2007, 65241P (5 April 2007); https://doi.org/10.1117/12.717696