Translator Disclaimer
Paper
18 April 2007 Self-powered multi-functional fiber sensors
Author Affiliations +
Abstract
Fiber optical components such as fiber gratings, fiber interferometers, and in-fiber Fabry-Perot filters are key components for optical sensing. Fiber optical sensors offer a number of advantages over other optical and electronic sensors including low manufacturing cost, immunity to electromagnetic fields, long lifetimes, multiplexing, and environmental ruggedness. Despite the advantages of purely passive optical components described above, fiber sensor performance and applications have been limited by their total passivity and solid-core/solid cladding structure configurations. Passive sensors can only gather limited information. Once deployed; set point, sensitivity, trigging time, responsivity, and dynamic range for each individual fiber sensor cannot be adjusted or reset to adapt to the changing environment for active sensing. Further, the fiber sensor sensitivity is also limited by the traditional solid core/solid cladding configuration. In this paper, we present a concept of active fiber sensor that can directly powered by in-fiber light. In contrast to a passive sensor, optical power delivered with sensing signal through the same fiber is used to power in-fiber fiber Bragg grating sensors. The optical characteristics of grating sensors can then be adjusted using the optical energy. When optical power is turned off, in-fiber components can serve as traditional passive sensor arrays for temperature and strain measurements. When optical power is turned on, the fiber sensor networks are capable of measuring a wide array of stimuli such as gas flow, wall shear stress, vacuum, chemical, and liquid levels in cryogenic, micro-gravity, and other hostile environments. In this paper, we demonstrate in-fiber light powered dual-function active FBG sensor for simultaneous vacuum, hydrogen fuel gas, and temperature measurement in a cryogenic environment.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kevin P. Chen, Charles Jewart, Michael Buric, Ben McMillen, Philip R. Swinehart, and Mokhtar Maklad "Self-powered multi-functional fiber sensors", Proc. SPIE 6529, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007, 652922 (18 April 2007); https://doi.org/10.1117/12.731476
PROCEEDINGS
8 PAGES


SHARE
Advertisement
Advertisement
Back to Top