You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 April 2007Investigating a stepped ultrasonic phased array transducer for the
evaluation and characterization of defects
Previous work has led to the design, simulation, and development of a linear phased array transducer. The intention of
the array is to be used as a non-destructive ultrasonic device to monitor and evaluate the health of a given specimen.
The phased array has been manufactured and tested for the detection and characterization of defects on a target. The
array was fabricated with a four-row "stepped" design with four wires to transfer data and one wire for grounding. The
"stepped" design allows for the interrogation of a larger region using time delays and beam sweeping without the use of
additional electrical channels. The array was designed to be utilized in a water immersion environment with about one
inch between the array and the target specimen. An OmniScan MX system was used to operate the phased array and
perform real-time linear and sectorial scans on a set of rectangular plates. S-scans allow for beam sweeping over an
angle range as well as adjustments for time delays and a true-depth display. The array was operated with sixteen active
elements and an angle range of 0 to 30 degrees. The phased array was tested with a variety of targets and was used to
investigate and characterize different types of defects such as cracking, warping, and corrosion. The ability of the
phased array to distinguish between defect types as well as resolve defect size was evaluated.
The alert did not successfully save. Please try again later.
M. Bohenick, E. Blickley, B. R. Tittmann, M. Kropf, "Investigating a stepped ultrasonic phased array transducer for the evaluation and characterization of defects," Proc. SPIE 6532, Health Monitoring of Structural and Biological Systems 2007, 653215 (11 April 2007); https://doi.org/10.1117/12.715799