Translator Disclaimer
27 April 2007 Semantic bifurcated importance field visualization
Author Affiliations +
While there are many good ways to map sensual reality to two dimensional displays, mapping non-physical and possibilistic information can be challenging. The advent of faster-than-real-time systems allow the predictive and possibilistic exploration of important factors that can affect the decision maker. Visualizing a compressed picture of the past and possible factors can assist the decision maker summarizing information in a cognitive based model thereby reducing clutter and perhaps related decision times. Our proposed semantic bifurcated importance field visualization uses saccadic eye motion models to partition the display into a possibilistic and sensed data vertically and spatial and semantic data horizontally. Saccadic eye movement precedes and prepares decision makers before nearly every directed action. Cognitive models for saccadic eye movement show that people prefer lateral to vertical saccadic movement. Studies have suggested that saccades may be coupled to momentary problem solving strategies. Also, the central 1.5 degrees of the visual field represents 100 times greater resolution that then peripheral field so concentrating factors can reduce unnecessary saccades. By packing information according to saccadic models, we can relate important decision factors reduce factor dimensionality and present the dense summary dimensions of semantic and importance. Inter and intra ballistics of the SBIFV provide important clues on how semantic packing assists in decision making. Future directions of SBIFV are to make the visualization reactive and conformal to saccades specializing targets to ballistics, such as dynamically filtering and highlighting verbal targets for left saccades and spatial targets for right saccades.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Eric Lindahl and Plamen Petrov "Semantic bifurcated importance field visualization", Proc. SPIE 6559, Enhanced and Synthetic Vision 2007, 65590M (27 April 2007);

Back to Top