You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 May 2007Quartz crystal nano-balance for hydrogen sensing at room temperature using carbon nanotubes aggregates
The gas sensor based on carbon nanotubes are presently receiving considerable attention because of the outstanding
properties, such as faster response, higher sensitivity, lower operating temperature and robustness of the nanotubes in
comparison with the other types of sensing materials.
In the present research, we demonstrate detection of hydrogen at room temperature using a Quartz Crystal Nano-balance
(QCN) and as sensing material, Single-Walled Carbon Nanotubes (SWCNTs) dispersed in a polythiophene matrix. The
experimental determination of H2 in H2/N2 mixtures has been performed by using a counter frequency and observing the
frequency shifts induced in a quartz crystal resonator by H2 adsorption and consequent mass variation of the active layer
deposited on the quartz.
The high sensitivity of the realized nano-balance allows us to observe mass variations up to few nanograms /Hertz and to
detect up to 1% of H2. The good sensing performances of the nanotube-based material make unnecessary the use of any
catalyst species for H2 detection. Moreover this QCN device is able to work with good efficiency at 23 °C and 1 Atm.
The alert did not successfully save. Please try again later.
M. Lucci, F. Toschi, V. Sessa, S. Orlanducci, E. Tamburri, M. L. Terranova, "Quartz crystal nano-balance for hydrogen sensing at room temperature using carbon nanotubes aggregates," Proc. SPIE 6589, Smart Sensors, Actuators, and MEMS III, 658917 (15 May 2007); https://doi.org/10.1117/12.721967