You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 July 2007Depth-resolved simplified characterization of collagen depletion
in dermis with polarization sensitive optical coherence tomography
applicable to non-laboratory conditions
A further insight into the prior concept of polarization sensitive optical coherence tomography system intended for non-laboratory
conditions is brought forward and an experimental proof-of-concept is presented. A phenomenological model
is adopted from the theory of light depolarization in crystalline polymers and modified to yield a simplified algorithm for
mapping depolarization ratio in dermis. The algorithm could distinguish between dermal layers with depleted collagen
content and normal dermis of normal perilesional skin. Dermis is simulated by bireringent lamellae of collagen arranged
chaotically in multiple layers parallel to the skin surface. Both the design concept and the model imply the sub-millimeter
tumor thickness as a proofed prognostic factor and an important criterion for complementary functional
diagnostics of skin cancers at their early phase of vertical growth. Choice of the model is inspired by similarity of
structural and optical properties between liquid-crystal collagen fibers in dermis and birefringent crystalline lamellae in
polymer materials. The numerical computation based on the model allowing for real characteristics of dermis gives
plausible interpreting of depolarization peculiarities caused by collagen depletion. Feasibility is discussed of exploiting
fiber optic analogs of achromatic retarders. Fabrication of the fiber retarders is shown to be realistic by making use of the
photonics technology possessed by the authors.