You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 October 1986A Lidar Technology Experiment From Space Shuttle: Lidar In-Space Technology Experiment (LITE)
The power of lidar to measure vertical profiles of stratospheric clouds and aerosols with fine vertical resolution (< 1 km) and a narrow field of view (approximately 1.5 milliradians) has been demonstrated through a long history of ground-based and aircraft experiments l. Additionally, lidar techniques have been used to study volcanic eruptions, to measure parameters such as cloud top heights, height of planetary boundary layer, and the distribution of cirrus and sub-cirrus clouds2. Additionally, performance criteria of a lidar instrument in space to measure atmospheric parameters have been defined through extensive development of mathematical simulations.3,4 The purpose of this experiment will be to provide experimental data of atmospheric backscatter at three wavelengths (1.06, .532, and .355 microns) for validation and verification of key parameters in the mathematical simulations of future space-based lidar experiments. Additionally, the performance of the lidar electro-optical system and mechanical, thermal, and structural configurations will be evaluated. In this paper, plans to conduct a technology experiment with a Shuttle-based lidar instrument will be presented. Design of the LITE instrument will also be given, and will include performance goals for the laser transmitter, telescope, optical receiver and associated electronics. Experimental results from space flight of the LITE instrument will be used to define performance criteria and designs for future atmospheric sounding experiments planned for the Space Station, Earth Observing System (EOS) platform and for more complex scientific lidar experiments.
The alert did not successfully save. Please try again later.
H E Poole, J W Cox, R H Couch, W H Fuller Jr., "A Lidar Technology Experiment From Space Shuttle: Lidar In-Space Technology Experiment (LITE)," Proc. SPIE 0663, Laser Radar Technology and Applications I, (6 October 1986); https://doi.org/10.1117/12.938674