You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 September 2007Sensitivity control of optical fiber biosensors utilizing turnaround point long period gratings with self-assembled polymer coatings
Ionic self-assembled multilayers (ISAMs) adsorbed on long period fiber gratings (LPGs) can serve as an inexpensive,
robust, portable, biosensor platform. The ISAM technique is a layer-by-layer deposition technique that creates thin films
on the nanoscale level. The combination of ISAMs with LPGs yields exceptional sensitivity of the optical fiber
transmission spectrum. We have shown theoretically that the resonant wavelength shift for a thin-film coated LPG can
be caused by the variation of the film's refractive index and/or the variation of the thickness of the film. We have
experimentally demonstrated that the deposition of nm-thick ISAM films on LPGs induces shifts in the resonant
wavelength of > 1.6 nm per nm of thin film. It has also been shown that the sensitivity of the LPG to the thickness of the
ISAM film increases with increased film thickness. We have further demonstrated that ISAM-coated LPGs can function
effectively as biosensors by using the biotin-streptavidin system and by using the Bacillus anthracis (Anthrax) antibody-
PA (Protective Antigen) system. Experiments have been successfully performed in both air and solution, which
illustrates the versatility of the biosensor. The results confirm that ISAM-LPGs yield a reusable, thermally-stable, and
robust platform for designing and building efficient optical biosensors.
The alert did not successfully save. Please try again later.
Erika Gifford, Z. Wang, S. Ramachandran, J. R. Heflin, "Sensitivity control of optical fiber biosensors utilizing turnaround point long period gratings with self-assembled polymer coatings," Proc. SPIE 6659, Organic-based Chemical and Biological Sensors, 66590D (12 September 2007); https://doi.org/10.1117/12.734392