You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 September 2007Technologies for cooling of large distributed and deployable loads
In future space applications, widely distributed sensors, as well as, large deployable structures, such as mirrors and
sunshades, will require active thermal control. However, thermal integration by conductive coupling with regenerative
cryocoolers is not feasible for such distributed loads, as it requires massive copper straps and provides only limited
means of thermal control. To address these issues, we are developing a continuous-flow rectified cooling loop (RCL) for
use with pulse tube refrigerators. The RCL consists of a rectifier, integrated into the cold heat exchanger of the pulse
tube refrigerator, and a flow loop with a MEMS-based, micro-scale, control valve. The RCL allows simple mechanical
integration and has the benefit of load temperature regulation using the actively controlled valve to regulate the gas flow.
The MEMS valve may also serve as the basis for a system of distributed Joule-Thomson (JT) coolers. In this paper, we
summarize the work that has been done to date by Atlas Scientific, in collaboration with the University of Wisconsin
Cryogenic Engineering Group (UWCEG) and the University of Michigan Solid State Electronics Lab (UMSSEL), in
developing the RCL and the MEMS-based micro-scale control valve.
The alert did not successfully save. Please try again later.
A. Kashani, J. R. Maddocks, G. F. Nellis, Y. B. Gianchandani, "Technologies for cooling of large distributed and deployable loads," Proc. SPIE 6678, Infrared Spaceborne Remote Sensing and Instrumentation XV, 667804 (26 September 2007); https://doi.org/10.1117/12.734351