You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 September 2007Polarization scattering from a Spectralon calibration sample
The in-plane Mueller matrix bidirectional reflectance distribution function (MMBRDF) is measured for a Spectralon
calibration target with a reflectance of 99%. Measurements are acquired using a Mueller matrix active imaging,
goniometric polarimeter operated in the near infrared at 1550nm. The Spectralon is measured for both incident and
scattering angles from -80 degrees to 80 degrees to within 20 degrees of retro-reflection. A range of polarization states
is generated and scattered polarization states are analyzed by means of a dual rotating retarder Mueller matrix
polarimeter. Complete Mueller matrix data is measured with a high-resolution camera in image form.
Polarization scatter data is presented in Mueller matrix angular arrays. As expected the Spectralon is a strong
depolarizer and weak s-plane oriented diattenuator. It was also a weak retarder. Diattenuation and retardance are
strongest at horizontal and vertical polarizations, and weakest for circular polarization states.
The alert did not successfully save. Please try again later.
Hannah Noble, Wai-Sze Tiffany Lam, Greg Smith, Stephen McClain, Russell A. Chipman, "Polarization scattering from a Spectralon calibration sample," Proc. SPIE 6682, Polarization Science and Remote Sensing III, 668219 (13 September 2007); https://doi.org/10.1117/12.747483