You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 September 2007Integrated modeling of point-spread function stability of the SNAP telescope
SNAP is a proposed space-based experiment designed to study dark energy and alternate explanations of the acceleration
of the universe's expansion by performing a series of complementary systematic-controlled astrophysical measurements.
The principal mission activities are the construction of an accurate Type Ia supernova Hubble diagram (the supernova
program) and conducting a wide-area weak gravitational lensing (WL) survey. WL measurements require highly
constant point spread function (PSF) second moments (ellipticity), and the aim of this study is to expand on the 2005
Sholl, et al. preliminary work, specifically via use of the Ball Aerospace integrated modeling tool, EOSyM (End-to-end
Optical System Model). This modeling environment combines thermal, structural and optical effects, including
alignment errors, manufacturing residuals and diffraction, in an integrated model of the telescope. Thermo-mechanically
induced motions and deformations of the mirrors are modeled as well as other disturbances, and corresponding ellipticity
variations of the PSF are quantified for typical operational scenarios. In this study, the effects of seasonal variations in
solar flux, transients introduced when pointing the body-fixed Ka-band antenna toward Earth, 90° roll maneuvers
(planned every three months of operations) and structure dimensional changes associated with composites desorption are
quantified and introduced into the optical system. Uncertainty in the telescope ellipticity distribution may be reduced by
examination of foreground stars within the field of view. Reference is made to ongoing work on the use of foreground
stars in quantifying the PSF.
The alert did not successfully save. Please try again later.
R. W. Besuner, M. J. Sholl, M. D. Lieber, M. L. Kaplan, "Integrated modeling of point-spread function stability of the SNAP telescope," Proc. SPIE 6687, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts III, 66870X (20 September 2007); https://doi.org/10.1117/12.732492