You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 October 2007Cavity QED with chip-based toroidal microresonators
We report the demonstration of strong coupling between single Cesium atoms and a high-Q chip-based microresonator.
Our toroidal microresonators are compact, Si chip-based whispering gallery mode resonators that confine light to small
volumes with extremely low losses, and are manufactured in large numbers by standard lithographic techniques.
Combined with the capability to couple efficiently light to and from these microresonators by a tapered optical fiber,
toroidal microresonators offer a promising avenue towards scalable quantum networks. Experimentally, laser cooled Cs
atoms are dropped onto a toroidal microresonator while a probe beam is critically coupled to the cavity mode. When an
atom interacts with the cavity, it modifies the resonance spectrum of the cavity, leading to rejection of some of the probe
light from the cavity, and thus to an increase in the output power. By observing such transit events while systematically
detuning the cavity from the atomic resonance, we determine the maximal accessible single-photon Rabi frequency of
Ω0/2π ≈ (100 ± 24) MHz. This value puts our system in the regime of strong coupling, being significantly larger than the dissipation rates in our system.
The alert did not successfully save. Please try again later.
B. Dayan, T. Aoki, E. Wilcut, S. Kelber, W. P. Bowen, A. S. Parkins, J. R. Petta, T. J. Kippenberg, E. Ostby, K. J. Vahala, H. J. Kimble, "Cavity QED with chip-based toroidal microresonators," Proc. SPIE 6710, Quantum Communications and Quantum Imaging V, 67100H (3 October 2007); https://doi.org/10.1117/12.734875