You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 October 2007Characterizing contamination inspection capabilities using programmed defect test reticles
The ORIONTM series of test reticles have been used for many years as the photomask industry standard for evaluating contamination inspection algorithms. The deposition of Polystyrene Latex (PSL) spheres on various reticle pattern
designs allow STARlightTM tool owners to measure the relative contamination inspection performance in a consistent and quantifiable manner. However, with recent inspection technology advances such as shorter laser (light source)
wavelengths and smaller inspection pixels, PSL spheres were observed to physically degrade over relatively short time
periods: especially for the smallest sized spheres used to characterize contamination inspection performance at the most
advanced technology nodes.
Investigations into using alternative materials or methods that address the issue of PSL shrinkage have not yet proven
completely successful. Problems such as failure to properly adhere to reticle surfaces or identification of materials that
can produce consistent and predictable sphere sizes for the reliable manufacture of these critical test masks are only some
of the challenges that must be solved. Even if these and other criteria are met, the final substance must appear to
inspection optics as pseudo soft defects which resemble actual contamination that inevitably appears on production
reticle surfaces.
In the interim, programmed pindot defects present in the quartz region of the SPICATM test reticle are being used to characterize contamination performance while a suitable long-term solution to address the issue of shrinking PSL
spheres on ORION masks can be found. This paper examines the results of a programmed pindot test reticle specifically
designed to evaluate contamination algorithms without the deposition of PSL spheres or similar structures. This
alternative programmed pindot test reticle uses various background patterns similar to the ORION, however, it also
includes multiple defects sizes and locations making it more desirable than the limited range of defects found on the
SPICA.
The alert did not successfully save. Please try again later.
Anthony Nhiev, John Riddick, Joseph Straub, Trent Hutchinson, Bryan Reese, Aditya Dayal, "Characterizing contamination inspection capabilities using programmed defect test reticles," Proc. SPIE 6730, Photomask Technology 2007, 673028 (25 October 2007); https://doi.org/10.1117/12.746822