Translator Disclaimer
1 March 2008 Image restoration by sparse 3D transform-domain collaborative filtering
Author Affiliations +
Proceedings Volume 6812, Image Processing: Algorithms and Systems VI; 681207 (2008)
Event: Electronic Imaging, 2008, San Jose, California, United States
We propose an image restoration technique exploiting regularized inversion and the recent block-matching and 3D filtering (BM3D) denoising filter. The BM3D employs a non-local modeling of images by collecting similar image patches in 3D arrays. The so-called collaborative filtering applied on such a 3D array is realized by transformdomain shrinkage. In this work, we propose an extension of the BM3D filter for colored noise, which we use in a two-step deblurring algorithm to improve the regularization after inversion in discrete Fourier domain. The first step of the algorithm is a regularized inversion using BM3D with collaborative hard-thresholding and the seconds step is a regularized Wiener inversion using BM3D with collaborative Wiener filtering. The experimental results show that the proposed technique is competitive with and in most cases outperforms the current best image restoration methods in terms of improvement in signal-to-noise ratio.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian "Image restoration by sparse 3D transform-domain collaborative filtering", Proc. SPIE 6812, Image Processing: Algorithms and Systems VI, 681207 (1 March 2008);


Spectral restoration for hyperspectral images
Proceedings of SPIE (May 26 2016)
Image Restoration With A Locally Variable Wiener Filter
Proceedings of SPIE (September 04 1979)
Restoration of images degraded by mechanical vibrations
Proceedings of SPIE (July 05 1994)
Restoration of moving blurred image based on TMS320C6416
Proceedings of SPIE (January 20 2006)

Back to Top