Paper
15 February 2008 Two-photon fluorescence imaging and correlation analysis applied to protein dynamics in C. elegans embryo
Zdeněk Petrášek, Carsten Hoege, Anthony A. Hyman, Petra Schwille
Author Affiliations +
Abstract
Two-photon fluorescence imaging of proteins labelled with GFP or its analogues provides information on the localization of the molecules in cells and tissues, and their redistribution on timescales as short as milliseconds. Fluorescence correlation spectroscopy (FCS) analyzes fluctuations of the fluorescence signal in order to yield information about the motion of the molecules on timescales considerably shorter than those accessible with imaging, allowing the determination of diffusion coefficients, estimation of aggregate size, molecular concentrations, etc., i. e., parameters that can be difficult to determine with imaging alone. Scanning FCS (sFCS) is a modification of FCS that provides information about molecular dynamics and type of motion, which is too slow for standard FCS, and not resolvable with imaging. We have applied two-photon imaging, FCS and sFCS to study the localization and redistribution of GFP-labelled proteins involved in the asymmetric first division of C. elegans embryos. While the distribution of the investigated proteins in the cytoplasm is homogeneous on the scale limited by the optical resolution and their fast motion can be well characterized with conventional FCS, the proteins localized in the cortex exhibit patterns evolving on the ms-s temporal scale. We use sFCS and explore the applicability of spatial correlation analysis (image correlation, STICS) to the qualitative and quantitative description of the dynamics of the cortex-localized proteins.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Zdeněk Petrášek, Carsten Hoege, Anthony A. Hyman, and Petra Schwille "Two-photon fluorescence imaging and correlation analysis applied to protein dynamics in C. elegans embryo", Proc. SPIE 6860, Multiphoton Microscopy in the Biomedical Sciences VIII, 68601L (15 February 2008); https://doi.org/10.1117/12.761722
Lens.org Logo
CITATIONS
Cited by 10 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Fluorescence correlation spectroscopy

Diffusion

Molecules

Luminescence

Proteins

Particles

Temporal resolution

Back to Top