Paper
14 February 2008 Comparison of thermal management techniques for semiconductor disk lasers
Author Affiliations +
Abstract
Semiconductor Disk Lasers (SDLs) are compact lasers suitable for watt to multi-watt direct generation in the 670- 2350nm waveband and frequency-doubled operation in the ultraviolet and visible regions. This is, however, critically dependent on the thermal management strategy used as, in this type of laser, the pump is absorbed over micrometer lengths and the gain and loss are temperature sensitive. In this paper, we compare the two heat dissipation techniques that have been successfully deployed to-date: the "thin device" approach where the semiconductor active mirror is bonded onto a heatsink and its substrate subsequently removed, and the "heatspreader" technique where a high thermal conductivity platelet is directly bonded onto the active part of the unprocessed epilayer. We show that for SDLs emitting at 1060nm with pump spots of ~80µm diameter, the heatspreader approach outperforms the thin-device alternative, with the best results being obtained with a diamond heatspreader. Indeed, the thermal resistances are measured to be 4.9, 10.4 and 13.0 K/W for diamond-bonded, SiC-bonded and flip-chip devices respectively. It is also observed, as expected, that the thermal management strategy indirectly affects the optimum output coupling and thus the overall performance of these lasers.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
S. Giet, A. J. Kemp, D. Burns, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa "Comparison of thermal management techniques for semiconductor disk lasers", Proc. SPIE 6871, Solid State Lasers XVII: Technology and Devices, 687115 (14 February 2008); https://doi.org/10.1117/12.761616
Lens.org Logo
CITATIONS
Cited by 14 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Semiconductors

Diamond

Resistance

Silicon carbide

Disk lasers

Semiconductor lasers

Output couplers

RELATED CONTENT


Back to Top