You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 February 2008Grayscale homogenizers in calcium fluoride
Standard UV materials, such as ArF-grade fused silica, have impurities that lead to low transmittance, high absorption,
and fluorescence when exposed to high irradiance. Calcium fluoride (CaF2), on the other hand, is a promising material
for use as an optical diffuser for applications at 157nm, 193nm, and 248nm due to its low defect density and high
transmission in the deep UV regime. In this paper, we discuss our method for fabricating Gaussian homogenizers in
calcium fluoride using a grayscale photolithography process. Refractive microlens array homogenizers and Gaussian
homogenizers have been fabricated in CaF2 and tested at 193nm for efficiency and uniformity. Using an excimer laser,
uniformity results were obtained for cylindrical lens arrays in tandem and crossed to observe the homogeneity in an
imaging configuration and for producing a square output. Efficiency, uniformity, and zero order measurements are
provided for the Gaussian homogenizers.
The alert did not successfully save. Please try again later.
Jeffrey Lawrence, Lamarr Simmons, Andrew Stockham, John G. Smith, Gregg Borek, Matthias Cumme, Roman Kleindienst, Peter Weissbrodt, "Grayscale homogenizers in calcium fluoride," Proc. SPIE 6883, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics, 68830O (6 February 2008); https://doi.org/10.1117/12.767531