You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 February 2008Advantages of quantum cascade detectors
Quantum cascade detectors (QCDs) have been introduced recently as a photovoltaic candidate to infrared
detection. Since QCDs work with no applied bias, longer integration time and different read-out circuits can
be used. Depending on the application, QCDs could be preferred to QWIPs. The systematic comparison
between QCDs and QWIPs is difficult due to the large number of parameters in a thermal imager for a given
application. Here we propose a first comparison between these two devices, starting with several examples,
based on specific cases. In particular, it is shown that QCDs in the 8-12 µm band are an interesting alternative
to QWIPs if higher operating temperature is required.
The alert did not successfully save. Please try again later.
A. Gomez, M. Carras, A. Nedelcu, E. Costard, X. Marcadet, V. Berger, "Advantages of quantum cascade detectors," Proc. SPIE 6900, Quantum Sensing and Nanophotonic Devices V, 69000J (12 February 2008); https://doi.org/10.1117/12.754215