You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
We outline the specifications of a portable Bio-photonics Workstation we have developed that utilizes just a single spatial light modulator to generate an array of up to 100 reconfigurable laser-traps with adjustable power ratios making 3D real-time optical manipulation possible with the click of a laptop mouse. We employ a simple patented optical mapping approach from a fast spatial light modulator to obtain reconfigurable intensity patterns corresponding to two independently addressable regions relayed to the sample volume where the optical manipulation of a plurality of nano-featured micro-objects takes place. The stand-alone Biophotonics Workstation is currently being tested by external partners with micro-biologic and chemistry expertise.
The alert did not successfully save. Please try again later.
Jesper Glückstad, Ivan Perch-Nielsen, Jeppe S. Dam, Darwin Z. Palima, "Bio-photonics workstation," Proc. SPIE 6905, Complex Light and Optical Forces II, 69050A (25 January 2008); https://doi.org/10.1117/12.763136