You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 March 2008Efficient classifier generation and weighted voting for atlas-based
segmentation: two small steps faster and closer to the combination
oracle
Atlas-based segmentation has proven effective in multiple applications. Usually, several reference images are combined
to create a representative average atlas image. Alternatively, a number of independent atlas images can be used, from which multiple segmentations of the image of interest are derived and later combined. One of the major drawbacks of this approach is its large computational burden caused by the high number of required registrations. To address this problem, we introduce One Registration, Multiple Segmentations (ORMS), a procedure to obtain multiple segmentations with a single online registration. This can be achieved by pre-computing intermediate transformations from the initial atlas images to an average image. We show that, compared to the usual approach, our method reduces time considerably
with little or no loss in accuracy. On the other hand, optimum combination of these segmentations remains an unresolved problem. Different approaches have been adopted, but they are all far from the upper bound of any combination strategy. This is given by the
Combination Oracle, which classifies a voxel correctly if any individual segmentation coincides with the ground truth.
We present here a novel combination approach, based on weighting the different segmentations according to the mutual information between the test image and the atlas image after registration. We compare this method with other existing combination strategies using microscopic MR images of mouse brains, achieving statistically significant improvement in segmentation accuracy.
The alert did not successfully save. Please try again later.
Xabier Artaechevarria, Arrate Muñoz-Barrutia, Carlos Ortiz-de-Solórzano, "Efficient classifier generation and weighted voting for atlas-based segmentation: two small steps faster and closer to the combination oracle," Proc. SPIE 6914, Medical Imaging 2008: Image Processing, 69141W (11 March 2008); https://doi.org/10.1117/12.769401