You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 March 2008Implementation of a high-sensitivity micro-angiographic fluoroscope (HS-MAF) for in-vivo endovascular image guided interventions (EIGI) and region-of-interest computed tomography (ROI-CT)
New advances in catheter technology and remote actuation for minimally invasive procedures are continuously
increasing the demand for better x-ray imaging technology. The new x-ray high-sensitivity Micro-Angiographic
Fluoroscope (HS-MAF) detector offers high resolution and real-time image-guided capabilities which are unique when
compared with commercially available detectors. This detector consists of a 300 μm CsI input phosphor coupled to a
dual stage GEN2 micro-channel plate light image intensifier (LII), followed by minifying fiber-optic taper coupled to a
CCD chip. The HS-MAF detector image array is 1024X1024 pixels, with a 12 bit depth capable of imaging at 30 frames
per second. The detector has a round field of view with 4 cm diameter and 35 microns pixels. The LII has a large
variable gain which allows usage of the detector at very low exposures characteristic of fluoroscopic ranges while
maintaining very good image quality. The custom acquisition program allows real-time image display and data storage.
We designed a set of in-vivo experimental interventions in which placement of specially designed endovascular stents
were evaluated with the new detector and with a standard x-ray image intensifier (XII). Capabilities such fluoroscopy,
angiography and ROI-CT reconstruction using rotational angiography data were implemented and verified. The images
obtained during interventions under radiographic control with the HS-MAF detector were superior to those with the XII.
In general, the device feature markers, the device structures, and the vessel geometry were better identified with the new
detector. High-resolution detectors such as HS-MAF can vastly improve the accuracy of localization and tracking of
devices such stents or catheters.
The alert did not successfully save. Please try again later.
C. N. Ionita, C. Keleshis, V. Patel, G. Yadava, K. R. Hoffmann, D. R. Bednarek, A. Jain, S. Rudin, "Implementation of a high-sensitivity micro-angiographic fluoroscope (HS-MAF) for in-vivo endovascular image guided interventions (EIGI) and region-of-interest computed tomography (ROI-CT)," Proc. SPIE 6918, Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling, 69181I (17 March 2008); https://doi.org/10.1117/12.770297