You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 March 2008Double patterning using dual spin-on Si containing layers with multilayer hard mask process
A new technology called the double patterning (DP) process with ArF immersion lithography is one of the candidate
fabrication technologies for 32 nm-node devices. Over the past few years, many studies have been conducted on
techniques for the DP process. Among these technologies, we thought that the double Si hard mask (HM) process is the
most applicable technology from the viewpoint of high technical applicability to 32 nm-node device fabrication.
However, this process has a disadvantage in the cost performance compared with other DP technologies since these HMs
are formed by the chemical vacuum deposition (CVD) method.
In this paper, we studied the DP process using a dual spin-on Si containing layer without using the CVD method to
improve process cost and process applicability. Perhydropolysilazane (PSZ) was used as one of the middle layers (MLs).
PSZ changes to SiO2 through the reaction with water by the catalytic action of amine in the baking step. Using PSZ and
Si-BARC as MLs, we succeeded in making a fine pattern by this novel DP technique. In this paper, the issues and
countermeasures of the double HM technique using spin-on Si containing layers will be reported.