You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 April 2008Testing of LIDAR system for turbulence profiles
The Georgia Tech Research Institute (GTRI) has developed a new type of LIDAR system for monitoring profiles of
atmospheric refractive turbulence. The system makes real-time measurements by projecting a laser beam to form a laser
beacon at several successive altitudes. The beacon is observed with a multiple-aperture telescope and the motion of the
beacon images from each altitude is characterized as the differential image motion variance. An inversion algorithm has
been developed to retrieve the turbulence profile. GTRI built a brassboard version of the LIDAR instrument and tested
it in October and December 2007, with truth data from scintillometers and from balloon-borne microthermal probes. The
tests resulted in the first time-height diagram of the strength of turbulence ever recorded by a LIDAR.
The alert did not successfully save. Please try again later.
Gary G. Gimmestad, David W. Roberts, John M. Stewart, Jack W. Wood, Frank D. Eaton, "Testing of LIDAR system for turbulence profiles," Proc. SPIE 6951, Atmospheric Propagation V, 695109 (18 April 2008); https://doi.org/10.1117/12.792204