Paper
14 April 2008 Thermo-optical model for Er3+:YAG gain media
Author Affiliations +
Abstract
The laser performance of resonantly pumped Er:YAG as the gain medium for an eye-safe high-power laser was investigated theoretically using a new thermo-optical model. The presented model takes into account the full spatially resolved temperature dependence of the most important parameters in the gain medium. Among those are the thermo-mechanical parameters (e.g. heat conduction), spectroscopic and multiphonon-relaxation lifetimes of the first four manifolds and the full spectral information of emission and absorption (4I15/24I13/2) as well as excited-state absorption and re-emission (4I13/24I9/2). All spectral lines are modeled as temperature dependent by calculating their line positions and line widths assuming two-phonon Raman interactions with the host. From these spectra the temperature dependent upconversion loss parameters can also be derived. The gain medium - cavity interaction is modeled by the rate equations for the first four manifolds and spectrally resolved radiation transport for pump and laser fields. Simultaneous solving this together with the heat generation and heat transport in the gain medium gives a realistic view into the Er:YAG laser performance. It predicts high optical-to-optical efficiences of > 60% at output powers of multiple kW from a single gain medium. The model is compared with experimental data of diode and fiber laser pumped Er:YAG lasers with good agreement.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Marc Eichhorn "Thermo-optical model for Er3+:YAG gain media", Proc. SPIE 6952, Laser Source Technology for Defense and Security IV, 69520P (14 April 2008); https://doi.org/10.1117/12.773870
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Er:YAG lasers

Absorption

Data modeling

Eye models

Defense and security

Defense technologies

High power lasers

RELATED CONTENT


Back to Top