You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 April 2008Low-cost semi-autonomous manipulation technique for explosive ordnance disposal robots
Robotic manipulators used on current EOD robotic platforms exhibit very few autonomous capabilities. This lack of
autonomy forces the operator to completely control manipulator movements. With the increasing complexity of robotic
manipulators, this can prove to be a very complex and tedious task. The development of autonomous capabilities for
platform navigation are currently being extensively researched and applied to EOD robots. While autonomous
manipulation has also been researched, this technology has yet to appear in fielded EOD robotic systems. As a result,
there is a need for the exploration and development of manipulator automation within the scope of EOD robotics. In
addition, due to the expendable nature of EOD robotic assets, the addition of this technology needs to add little to the
overall cost of the robotic system. To directly address the need for a low-cost semi-autonomous manipulation capability
for EOD robots, the Naval Explosive Ordnance Disposal Technology Division (NAVEODTECHDIV) proposes the
Autonomous Robotic Manipulator (ARM). The ARM incorporates several semi-autonomous manipulation behaviors
including point-and-click movement, user-defined distance movement, user-defined angle positioning, memory locations
to save and recall manipulator positions, and macros to memorize and repeat multi-position repetitive manipulator
movements. These semi-autonomous behaviors will decrease an EOD operator's time on target by reducing the
manipulation workload in a user-friendly fashion. This conference paper will detail the background of the project,
design of the prototype, algorithm development, implementation, results, and future work.
The alert did not successfully save. Please try again later.
Andrew Czop, Michael J. Del Signore, Kurt Hacker, "Low-cost semi-autonomous manipulation technique for explosive ordnance disposal robots," Proc. SPIE 6962, Unmanned Systems Technology X, 69620M (16 April 2008); https://doi.org/10.1117/12.782082