You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 May 2008Concave diffraction gratings fabricated with planar lithography
This paper reports on the development and validation of a new technology for the fabrication of variable line-spacing
non-planar diffraction gratings to be used in compact spectrometers. The technique is based on the standard lithographic
process commonly used for pattern transfer onto a flat substrate. The essence of the technology presented here is the
lithographic fabrication of a planar grating structure on top of a flexible membrane on a glass or silicon wafer and the
subsequent deformation of the membrane using a master shape. For the validation of the proposed technology we
fabricated several reflection concave diffraction gratings with the f-numbers varying from 2 to 3.8 and a diameter in the
4 - 7 mm range. A glass wafer with circular holes was laminated by dry-film resist to form the membranes.
Subsequently, standard planar lithography was applied to the top part of the membranes for realizing grating structures.
Finally the membranes were deformed using plano-convex lenses in such a way that precise lens alignment is not
required. A permanent non-planar structure remains after curing. The imaging properties of the fabricated gratings were
tested in a three-component spectrograph setup in which the cleaved tip of an optical fiber served as an input slit and a
CCD camera was used as a detector. This simple spectrograph demonstrated subnanometer spectral resolution in the 580
- 720 nm range.
The alert did not successfully save. Please try again later.
S. Grabarnik, A. Emadi, H. Wu, G. De Graaf, R. F. Wolffenbuttel, "Concave diffraction gratings fabricated with planar lithography," Proc. SPIE 6992, Micro-Optics 2008, 699214 (14 May 2008); https://doi.org/10.1117/12.781057