You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 July 2008Precision quantum efficiency measurements on 1.7 micron near infrared devices
High detector quantum efficiency (QE) can greatly improve speed and performance of wide field instruments
that strive for fast precision photometry. SNAP, a proposed satellite mission dedicated to exploring the nature
of the dark energy will employ a very large focal plane instrumented with about equal number of CCD and
NIR sensors totaling more than 600 million pixels covering roughly 0.7 square degrees on the sky. To precisely
characterize the NIR detector QE, the SNAP project has put in place a test set-up capable of measuring absolute
QE at the 5% level with the goal of ultimately reaching a precision better than 2%. Illumination of the NIR
detectors is provided by either a quartz tungsten halogen lamp combined with a set of narrow band filters or
a manually tunable monochromator. The two light sources feed an integrating sphere at a distance of roughly
60 cm from the detector to be tested and a calibrated InGaAs photodiode, mounted adjacent to the NIR
detector provides absolute photon flux measurements. This paper describes instrumentation, performance and
measurement procedures and summarizes results of detailed characterization of the QE on several SNAP devices
as a function of wavelength.
The alert did not successfully save. Please try again later.
M. Schubnell, M. G. Brown, A. Karabina, W. Lorenzon, N. Mostek, S. Mufson, G. Tarlé, C. Weaverdyck, "Precision quantum efficiency measurements on 1.7 micron near infrared devices," Proc. SPIE 7021, High Energy, Optical, and Infrared Detectors for Astronomy III, 70210L (24 July 2008); https://doi.org/10.1117/12.789026