You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 April 2008Quantum computation and hidden variables
Many physicists limit oneself to an instrumentalist description of quantum phenomena and ignore the problems of
foundation and interpretation of quantum mechanics. This instrumentalist approach results to "specialization barbarism"
and mass delusion concerning the problem, how a quantum computer can be made. The idea of quantum computation
can be described within the limits of quantum formalism. But in order to understand how this idea can be put into
practice one should realize the question: "What could the quantum formalism describe?", in spite of the absence of an
universally recognized answer. Only a realization of this question and the undecided problem of quantum foundations
allows to see in which quantum systems the superposition and EPR correlation could be expected. Because of the
"specialization barbarism" many authors are sure that Bell proved full impossibility of any hidden-variables
interpretation. Therefore it is important to emphasize that in reality Bell has restricted to validity limits of the no-hidden-variables
proof and has shown that two-state quantum system can be described by hidden variables. The later means that
no experimental result obtained on two-state quantum system can prove the existence of superposition and violation of
the realism. One should not assume before unambiguous experimental evidence that any two-state quantum system is
quantum bit. No experimental evidence of superposition of macroscopically distinct quantum states and of a quantum bit
on base of superconductor structure was obtained for the present. Moreover same experimental results can not be
described in the limits of the quantum formalism.
The alert did not successfully save. Please try again later.
V. V. Aristov, A. V. Nikulov, "Quantum computation and hidden variables," Proc. SPIE 7023, Quantum Informatics 2007, 702302 (29 April 2008); https://doi.org/10.1117/12.801893