You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 May 2008Printability impact of progressive defects: ammonium sulfate emulation study
In the relentless pursuit of device miniaturization and sustainable yield performance, resolution enhancement techniques
(RET) such as optical proximity correction (OPC) and sub-resolution assist feature (SRAF) are identified as enabling
technologies that fuel the industry. The introduction of advanced reticles, however, considerably augments the mask
error enhancement factor (MEEF) where the growth of progressive defects or haze is accelerated by repeated laser
exposure, and continues to be a source of reticle degradation threatening device yield. Previous investigations have
identified ammonium sulfate, cyanuric acid and ammonium oxalate as the primary and most concerning species found in
both mask shop and wafer fabs.
In this work, magnesium sulfate is used to emulate crystal growth due to its identical optical properties to ammonium
sulfate. A technique has been developed to deposit magnesium sulfate of varying concentrations onto chemically cleaned
reticle surfaces. These defects are then inspected with a high resolution reticle inspection system enabled with MEEF
detector Litho3. Upon inspection, defects are classified and analyzed with respect to their location relative to device
geometry, optical transmission loss as well as the residing surface. Ammonium oxalate crystals are also deposited
separately onto reticle surface to comprehend the impact of crystal type and population on defect printability.
Compositional analysis are carried out using Raman spectroscopy and time-of-flight secondary ion mass spectroscopy
(TOF-SIMS) to correlate the amount of magnesium sulfate and ammonium oxalate crystals with transmission loss. Such
emulation study of various crystal formulation mimics progressing stages of crystallization and allows a mechanistic
understanding of crystal congregation, transmission loss and defect printability.