You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 August 2008Polarization modulation of an optical trap's spring constant
Using a Fresnel zone plate, we demonstrate optical trapping with a larger numerical aperture than is commonly available with commercial objective lenses. The zone plate is fabricated onto the inner wall of the fluidic cell and, consequently, focusing is free from on axis aberrations due to an absence of dielectric interfaces. Using zone plates with extremely large focusing angles, we observe an enhanced ellipticity in the trapping volume. For a zone plate with a numerical aperture of 0.986nwater (1.308), we observe a trapping stiffness that is more than four times stiffer perpendicular to the polarization than parallel to the polarization. By rotating the incident linear polarization state, the trapping stiffness along a given direction can be modulated by a factor of four. The ellipticity in the focal volume is due to the presence of an axial field component whose magnitude is proportional to the sine of the focusing angle of the lens.
The alert did not successfully save. Please try again later.
E. Schonbrun, K. B. Crozier, "Polarization modulation of an optical trap's spring constant," Proc. SPIE 7038, Optical Trapping and Optical Micromanipulation V, 70381X (29 August 2008); https://doi.org/10.1117/12.793428