You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 August 2008Charge transport properties of low-temperature solution processable poly(3-hexylthiophene)/surface modified TiO2 bulk heterojunction systems
The solution processable poly(3-hexylthiophene)(P3HT)/TiO2-nanorod hybrid material for solar cells has been
successfully demonstrated. A critical issue for using hybrid heterojunction concept is the interface properties which
affect the exciton separation efficiency and bi-carrier transport. To improve the interface properties, we replace the
insulating surfactant on TiO2 nanorod surface with a more conductive oligomer, carboxylate terminated 3-hexylthiophene (P3HT-COOH). The enhancement of exciton separation efficiency due to better organic-inorganic
interfacial compatibility can be obtained. The electron mobility for transporting in the TiO2 network is improved. A
power conversion efficiency has been increased 3 times by using this new hybrid material without optimization as
compared with the hybrid without P3HT-COOH modification.